
HrOUG

Scaling To Infinity:

Partitioning Data Warehouses

Scaling To Infinity:

Partitioning Data WarehousesPartitioning Data Warehouses

on Oracle Database

Partitioning Data Warehouses

on Oracle Database

Thursday 18-October 2012

Tim Gorman

www.EvDBT.com

Thursday 18-October 2012

Tim Gorman

www.EvDBT.com

HrOUG

• Co-author…

1. “Oracle8 Data Warehousing”, 1998 John Wiley & Sons

2. “Essential Oracle8i Data Warehousing”, 2000 John Wiley & Sons

3. “Oracle Insights: Tales of the Oak Table”, 2004 Apress

4. “Basic Oracle SQL” 2009 Apress

5. “Expert Oracle Practices: Database Administration with the Oak Table”, 2010 Apress

Speaker Qualifications

5. “Expert Oracle Practices: Database Administration with the Oak Table”, 2010 Apress

• 28 years in IT…

• “C” programmer, sys admin, network admin (1984-1990)

• Consultant and technical consulting manager at Oracle (1990-1998)

• Independent consultant (http://www.EvDBT.com) since 1998

• Rocky Mountain Oracle Users Group (http://www.RMOUG.org) since 1992

• Oak Table network (http://www.OakTable.net) since 2002

• Oracle ACE since 2007, Oracle ACE Director since 2012

HrOUGHrOUG

Agenda

• The virtuous cycle and the death spiral

• Basic 5-step EXCHANGE PARTITION load technique

• 7-step EXCHANGE PARTITION technique for “dribble effect”• 7-step EXCHANGE PARTITION technique for “dribble effect”

• Performing MERGE/up-sert logic using EXCHANGE PARTITION

HrOUGHrOUG

Data warehousing reality

• We have to recognize how features for large data

volumes and optimal queries work together

– Partitioning – Bitmap indexes– Partitioning

– Direct-path loading

– Compression

– Star transformation

– Bitmap indexes

– Bitmap-join indexes

– READ ONLY tablespaces

– Information lifecycle

management

• Because it really isn’t documented anywhere

HrOUG

The Virtuous Cycle
• Non-volatile time-variant data implies…

– Data warehouses are INSERT only

• Insert-only data warehouses implies…
– Tables and indexes range-partitioned by a DATE column

• Tables range-partitioned by DATE enables…
– Data loading using EXCHANGE PARTITION load technique– Data loading using EXCHANGE PARTITION load technique

– Partitions organized into time-variant tablespaces

– Incremental statistics gathering and summarization

• Data loading using EXCHANGE PARTITION enables…
– Direct-path (a.k.a. append) inserts

– Data purging using DROP/TRUNCATE PARTITION instead of DELETE

– Bitmap indexes and bitmap-join indexes

– Elimination of ETL “load window” and 24x7 availability for queries

HrOUG

• Direct-path (a.k.a. append) inserts enable…
– Load more data, faster, more efficiently

– Optional NOLOGGING on inserts

– Basic table compression (9i) or HCC (11gR2) for Oracle storage

– Eliminates contention in Oracle Buffer Cache during data loading

• Optional NOLOGGING inserts enable…

The Virtuous Cycle

• Optional NOLOGGING inserts enable…

– Option to generate less redo during data loads

– Optimization of backups

• Table compression enables…

– Less space consumed for tables and indexes

– Fewer I/O operations during queries

• Partitions organized into time-variant tablespaces enable…

– READ ONLY tablespaces for older, less-volatile data

HrOUGHrOUG

The Virtuous Cycle
• READ ONLY tablespaces for older less-volatile data enables…

– Tiered storage

– Backup efficiencies

• Data purging using DROP/TRUNCATE PARTITION enables…

– Faster more efficient data purging than using DELETE statements– Faster more efficient data purging than using DELETE statements

• Bitmap indexes enable…

– Star transformations

• Star transformations enable…

– Optimal query-execution plan for dimensional data models

– Bitmap-join indexes

• Bitmap-join indexes enable…

– Further optimization of star transformations

HrOUG

The Death Spiral

• ETL using “conventional-path” INSERT, UPDATE, and DELETE operations

• Conventional-path operations work well in transaction environments

– High-volume data loads in bulk are problematic

– High parallelism causes contention in Shared Pool, Buffer Cache– High parallelism causes contention in Shared Pool, Buffer Cache

• Mixing of queries and loads simultaneously on table and indexes

• Periodic rebuilds/reorgs of tables if deletions occur

• Full redo and undo generation for all inserts, updates, and deletes

– Bitmap indexes and bitmap-join indexes

• Modifying bitmap indexes is slow, SLOW, SLOW

• Unavoidable locking issues in during parallel operations

HrOUGHrOUG

The Death Spiral
• ETL dominates the workload in the database

– Queries will consist mainly of “dumps” or extracts to downstream systems

– Query performance worsens as tables/indexes grow larger

– Stats gathering takes longer, smaller samples worsen query performance

– Contention between queries and ETL become evident– Contention between queries and ETL become evident

– Uptime impacted as bitmap indexes must be dropped/rebuilt

• Backups consume more and more time and resources

– Entire database must be backed up regularly

– Data cannot be “right-sized” to storage options according to IOPS, so
storage becomes non-uniform and patchwork, newer less-expensive
storage is integrated amongst older high-quality storage, failure points
proliferate

HrOUGHrOUG

Basic 5-step technique
• The basic technique of bulk-loading new data into a temporary-user

“scratch” table, which is then indexed, analyzed, and finally “published” using the

EXCHANGE PARTITION operation

– This should be the default load technique for all large tables in a data warehouse

• Assumptions for this example:

– A “type 2” time-variant composite-partitioned fact table named TXN

• Range partitioned on DATE column TXN_DATE

• Hash sub-partitioned on NUMBER column ACCT_KEY

– 25-Feb 2014 data to be loaded into “scratch” table named TXN_SCRATCH

– Ultimately data to be published into partition P20140225 on TXN

HrOUGHrOUG

Range-hash

composite-partitioned

TXN

Hash-partitioned

TXN_SCRATCH
2. Bulk

Loads

Basic 5-step technique 1. Create

ScratchTable

22-Feb

2014

23-Feb

2014

24-Feb

2014

(empty) 25-Feb

2014

3. Table &

Col Stats

4. Index

Creates

5. Exchange

Partition

HrOUGHrOUG

Range-hash

composite-partitioned

TXN

Basic 5-step technique

2. Bulk

Loads

1. Create

ScratchTable

Exchange

Hash-partitioned

TXN_SCRATCH

22-Feb

2014

23-Feb

2014

24-Feb

2014

(empty)25-Feb

2014

3. Table &

Col Stats

4. Index

Creates

5. Exchange

Partition

Exchange

Partition

HrOUGHrOUG

Basic 5-step technique

1. Create temporary table TXN_SCRATCH as a hash-partitioned table

2. Perform parallel, append load of data into TXN_SCRATCH

3. Gather CBO statistics on table TXN_SCRATCH

• Only table and columns stats• Only table and columns stats

4. Create indexes on TXN_SCRATCH matching local indexes on TXN

5. alter table TXN

exchange partition P20140225 with table TXN_SCRATCH

including indexes without validation update global indexes;

HrOUGHrOUG

Basic 5-step technique
• It is a good idea to encapsulate this logic inside PL/SQL packaged- or stored-procedures:

SQL> exec exchpart.prepare(‘TXN’,’TXN_SCRATCH’,’25-FEB-2014’);

SQL> alter session enable parallel dml;

SQL> insert /*+ append parallel(n, 16) */ into txn_scratch n

3 select /*+ full(x) parallel(x, 16) */ *3 select /*+ full(x) parallel(x, 16) */ *

4 from ext_stage x

5 where x.load_date >= ‘25-FEB-2014’

6 and x.load_date < ‘26-FEB-2014’;

SQL> commit;

SQL> exec exchpart.finish(‘TXN’,’TXN_SCRATCH’);

• DDL for EXCHPART package posted at http://www.EvDBT.com/tools.htm#exchpart

HrOUGHrOUG

• In real-life, data loading is often much messier…
– Due to range partition key column not matching load cycles…

Example: data to be loaded on 25-Feb is ~1,000,000 rows:

The “dribble effect”

Example: data to be loaded on 25-Feb is ~1,000,000 rows:

• 950,000 rows for 25-Feb

• 45,000 rows for 24-Feb

• 4,000 rows for 23-Feb

• 700 rows for 22-Feb

• 200 rows for 21-Feb

• 90 rows for 20-Feb

• …and a dozen rows left over from 07-Jan…

HrOUGHrOUG

The “dribble effect”
Use EXCHANGE PARTITION technique when >= N rows; otherwise, conventional INSERT

for d in (select trunc(txn_dt) dt, count(*) cnt from EXT_STAGE group by trunc(txn_dt)) loop
--
if d.cnt >= 100 then

--
exchpart.prepare(‘TXN’,’TXN_P’||to_char(d.dt,’YYYYMMDD’), d.dt);
insert /*+ append parallel(n,16) */ into TXN_P20140224 n
select /*+ parallel(x,16) */ * from EXT_STAGE xselect /*+ parallel(x,16) */ * from EXT_STAGE x
where x.txn_dt >= d.dt and x.txn_dt < d.dt + 1;
exchpart.finish(‘TXN’, ’TXN_P’||to_char(d.dt,’YYYYMMDD’));
exchpart.drop_indexes(’TXN_P’||to_char(d.dt,’YYYYMMDD’));
insert /*+ append parallel(n,16) */ into TXN_P20140224 n
select /*+ parallel(x,16) */ * from EXT_STAGE x
where x.txn_dt >= d.dt and x.txn_dt < d.dt + 1;
--

else
--
insert into TXN
select * from ext_stage
where txn_dt >= d.dt and txn_dt < d.dt + 1;
--

end if;
--

end loop;

HrOUGHrOUG

Range-hash

composite-partitioned

TXN
2. Bulk

Loads

7-step technique 1. Create

ScratchTable

Hash-partitioned

TXN_P20140224

22-Feb

2014

23-Feb

2014

24-Feb

2014

(empty) 24-Feb

2014

3. Table &

Col Stats

4. Index

Creates

5. Exchange

Partition

HrOUGHrOUG

Composite-partitioned

table TXN

7-step technique

2. Bulk

Loads

1. Create

ScratchTable

Hash-partitioned

TXN_P20140224

Exchange

22-Feb

2014

23-Feb

2014

24-Feb

2014

(950,000 rows)25-Feb

2014

3. Table &

Col Stats

4. Index

Creates

5. Exchange

Partition

Exchange

Partition

HrOUGHrOUG

Composite-partitioned

table TXN

7-step technique

7. Bulk load

6. Drop Indexes

Hash-partitioned

TXN_P20140224

22-Feb

2014

23-Feb

2014

24-Feb

2014

25-Feb

2014

24-Feb

2014

HrOUGHrOUG

7 step technique
1. Create temporary table TXN_P20140224 as a hash-partitioned table

2. Perform parallel, append load of data into TXN_P20140224

3. Gather CBO statistics on table TXN_P20140224

• Only table and columns stats• Only table and columns stats

4. Create indexes on TXN_P20140224 matching local indexes on TXN

5. alter table TXN

exchange partition P20140224 with table TXN_P20120224

including indexes without validation update global indexes;

6. Drop indexes on TXN_P20120224

7. Perform parallel, append load of data into TXN_P20120224

8. …and…

HrOUGHrOUG

…OK, more than 7 steps…

• Need to determine how long to retain date-
stamped “scratch” tables

– EXCHPART.PREPARE procedure first checks if the – EXCHPART.PREPARE procedure first checks if the
proposed “scratch” table exists

• If not, then creates it from base partition

• Otherwise, just use what exists

– Need to drop “scratch” tables after N load cycles

HrOUGHrOUG

MERGE / Up-sert logic

• Slowly-changing dimension tables

– Change often enough to require time-variant image of
datadata

• Should be loaded similar to fact tables using basic 5-step or
advanced 7-step EXCHANGE PARTITION loads

– Also require current point-in-time image of data

• MERGE or update-else-insert (a.k.a. up-sert) logic

– If row exists, then update, else insert

HrOUGHrOUG

MERGE / Up-sert or…

• So we could either do it this way…

merge into curr_acct_dimmerge into curr_acct_dim

using (select * from acct_dim

where eff_dt >= ‘25-FEB-2014’

and eff_dt < ‘26-FEB-2014’)

when matched then update set ...

when not matched then insert ...;

HrOUGHrOUG

…or EXCHANGE PARTITION

1. Create temporary table ACCT_SCRATCH as a hash-partitioned table

2. Perform parallel, append load of data into ACCT_SCRATCH

• Nested in-line SELECT statements doing UNION, ranking, and filtering

3. Gather CBO statistics on table ACCT_SCRATCH3. Gather CBO statistics on table ACCT_SCRATCH

4. Create indexes on ACCT_SCRATCH matching local indexes on
CURR_ACCT_DIM

5. alter table CURR_ACCT_DIM

exchange partition PDUMMY with table ACCT_SCRATCH

including indexes without validation;

HrOUG

Range-hash composite-partitioned

table ACCT_DIM (type-2 dimension)

Range-hash composite-partitioned

table CURR_ACCT_DIM

(type-1 dimension)

Hash-partitioned table

ACCT_SCRATCH

Merge / Up-sert

23-Feb

2014

24-Feb

2014

25-Feb

2014

Union/filter operation

HrOUG

CURR_ACCT_DIM
• Range-hash composite-

partitioned

• Range partition key

ACCT_SCRATCH
• Hash partitioned

• Hash parition key

column same as

Merge / Up-sert

Exchange• Range partition key

column = PK column

• Single range partition

named PDUMMY

• B*Tree index on PK

(local)

• Bitmap indexes (local)

on attributes

CURR_ACCT_DIM

• Indexes created to

match local indexes on

CURR_ACCT_DIM

Exchange

Partition

HrOUG

Merge / Up-sert

INSERT /*+ append parallel(t,8) */ INTO ACCT_SCRATCH t

SELECT …(list of columns)…
FROM (SELECT …(list of columns)…,

ROW_NUMBER() over (PARTITION BY acct_key

ORDER BY eff_dt desc) rn

FROM (SELECT …(list of columns)…FROM (SELECT …(list of columns)…
FROM CURR_ACCT_DIM

UNION ALL

SELECT …(list of columns)…
FROM ACCT_DIM partition(P20140225)))

WHERE RN = 1;

1. Inner-most query pulls newly-loaded data from ACCT_DIM, unioned with existing data from
type-1 CURR_ACCT_DIM

2. Middle query ranks rows within each ACCT_KEY value, sorted by EFF_DT in descending order
3. Outer-most query selects only the latest row for each ACCT_KEY and passes to INSERT
4. INSERT APPEND (direct-path) and parallel, can compress rows, if desired

HrOUGHrOUG

Merge / Up-sert

• Assume that…
– CURR_ACCT_DIM has 15m rows total

– 1m new rows just loaded into 25-Feb partition of ACCT_DIM
• 100k (0.1m) rows are new accounts, 900k (0.9m) rows changes to existing accounts

• Then, what will happen is…• Then, what will happen is…
– Inner-most query in SELECT fetches 15m rows from CURR_ACCT_DIM unioned with

1m rows from 25-Feb partition of ACCT_DIM, returning 16m rows in total

– Middle query in SELECT ranks rows within each ACCT_KEY by EFF_DT in descending
order, returning 16m rows

– Outer-most query in SELECT filters to most-recent row for each ACCT_KEY,
returning 15.1m rows

– Inserts 15.1m rows into ACCT_SCRATCH

HrOUGHrOUG

Summary

1. During load cycles, load time-variant type-2 tables…

– Either using basic 5-step EXCHANGE PARTITION load technique when

load cycles match granularity of range partitions…

– Or using 7-step EXCHANGE PARTITION load technique for “dribble

29

– Or using 7-step EXCHANGE PARTITION load technique for “dribble

effect” when load cycles do not match granularity of range partitions

2. …then, merge newly-loaded data from time-variant tables

into point-in-time type-1 tables

– Using EXCHANGE PARTITION load technique to accomplish merge /

up-sert logic

HrOUGHrOUG

Thank You!
Tim’s contact info:

– Web: http://www.EvDBT.com

– Email: Tim@EvDBT.com

White Papers: http://www.EvDBT.com/papers.htmWhite Papers: http://www.EvDBT.com/papers.htm

– “Scaling to Infinity” paper by Tim Gorman

– “Supercharging Star Transformations” by Jeff Maresh

– “Managing the Data Lifecycle” by Jeff Maresh

Scripts and Tools: http://www.EvDBT.com/tools.htm

– “exchpart.sql” package

